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ABSTRACT

Forecasts from nowcasting models are increasingly becoming a crucial input to the rainfall-runoff models. 
A basic approach to the nowcast generation is based on extrapolation (advection) of current precipitation 
field. The main limitation of such nowcasting is the rapid decrease in accuracy with forecasting lead time, 
due to dynamical evolution of precipitation, especially when convection appears, therefore recent studies 
are focused on taking into account also the evolution of precipitation. According to subject literature, the 
conceptual cell lifecycle models are not sufficient to significantly increase forecast accuracy, thus at present 
new approaches based on autoregressive models are investigated. This paper presents the SNAR (Spec-
tral Nowcasting with Autoregression) nowcasting model developed at IMGW-PIB. The aim of the present 
research is to improve the nowcasting reliability, and to extend the lead time. The model proposes two in-
novative solutions: (I) decomposition of precipitation field to layers associated with their spatial scale, (II) 
forecasting based on autoregressive model. The paper gives an overview of algorithms used in the SNAR 
model and provides preliminary results.
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INTRODUCTION

The concept of nowcasting
Currently, the basic tool for generating short-term 
precipitation forecasts, up to 2 or 3 days, is the me-
soscale numerical weather prediction (NWP). How-
ever, in the case of convective phenomena occurring 
at a very small spatial scale, and dependent on local 
meteorological conditions, these models fail short in 
their forecasting, due to their overly simplified physi-
cal description of the phenomena. In order to forecast 
such phenomena, nowcasting models are most often 
used which, for shorter lead times, have higher re-
liability than the NWP models (Pierce et al., 2012). 
“Nowcasting” is defined as forecasts with a very short 
lead time of up to 2–4 hours, based on the extrapo-

lation (advection) of the precipitation field, often in-
cluding also the evolution of the precipitation field. 
The initial conditions for nowcasting are defined by 
the “analysis” of the precipitation field.

Nowcasting of the precipitation field can be pre-
sented as a transformation carried out in accordance 
with the formula containing the sum of two compo-
nents describing the advection and evolution of the 
precipitation field:

	 R t t x R t x x R t x x( , ) ( , ) ( , )0 0 0+ = − + −∆ ∆ ∆ ∆ 	 (1)

where:
	 R	 –  precipitation intensity;
	 t0	 –  time of generating the forecast (the analysis);
	 Dt	–  lead time of the forecast;
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	 x	 –  position of the pixel;
	 Dx	 – � displacement of the pixel during the forecast 

lead time;
	 DR	– � change in the intensity of rainfall caused by 

the evolution of the precipitation field. 

In most cases, the displacement (advection) vectors 
are determined by searching for such a shift between 
two successive fields of the precipitation analysis, at 
which the correlation coefficient will take the highest 
value. The field of displacement vectors is smoothed 
spatially by matching them with the surroundings or 
by imposing a constraint, for instance in the form of 
a field continuity equation.

Virtually all of the currently created models take 
into account the evolution of the precipitation field 
expressed as ΔR, which allows to extend the lead 
time of the forecasts while maintaining the verifiabil-
ity at an appropriate level. In the TITAN model (Dix-
on, Wiener, 1993) a linear trend was used for this 
purpose, while in the British model GANDOLF, an 
empirical model of convective cell life cycle (Hand 
1996; Pierce et al., 2000) was applied. Nevertheless, 
the GANDOLF model does not produce fully satis-
factory results.

Therefore, other solutions are sought. One of 
those, used in the STEPS model developed in the Bu-
reau of Meteorology in Australia, developed to the 
commercial version in the British Met Office, is the 
application of the autoregressive (AR) model to the 
field of precipitation. In the STEPS model, the field of 
precipitation is divided into layers related to the spa-

tial scale of rainfall structures using the fast Fourier 
transform (Seed, 2003). Extrapolation and evolution 
algorithms are applied to individual layers, whereupon 
the predicted precipitation field layers are assembled 
into final forecasts for different lead times of the fore-
cast (Bowler et al., 2006). A similar approach is being 
developed also in the Spanish SBMcast model (Beren-
guer et al., 2011).

OPERATIONAL NOWCASTING AT IMGW-PIB

Nowcasting methods using the assumption of extrap-
olation of the current precipitation field usually con-
sist of modules, which are summarized in Table 1. 
At the Institute of Meteorology and Water Manage-
ment – National Research Institute (IMGW-PIB), two 
models of this type are currently in operation: one, 
the INCA-PL2 – modernized at the IMGW-PIB the 
INCA (Integrated Nowcasting through Comprehen-
sive Analysis) model of the Austrian meteorological 
service, forecasting precipitation and other meteoro-
logical fields (Haiden et al., 2011; Kann et al., 2012); 
and the other, the SCENE (Storm Cell Evolution and 
Nowcasting) – a model developed at the IMGW-PIB 
only for precipitation (Jurczyk et al., 2013). The initial 
conditions are generated by the RainGRS system (Sz-
turc et al., 2014).

These models are important prognostic tools, 
however, the continuous development of algorithms 
requires the implementation of new techniques that 
improve the reliability of forecasts and increase their 
lead times.

Table 1. Comparison of main algorithms of rainfall nowcasting models: INCA-PL2, SCENE and SNAR

Algorithm INCA-PL2 
Model SCENE Model SNAR Model

Detecting 
convection None

Based on a set of parameters 
(radar, lightning detection, mesoscale 
models) using the fuzzy logic 
technique

Decomposition of the precipitation field into 
levels associated with the spatial scale of 
precipitation using fast Fourier transform 
(FFT)

Extrapolating the 
field of precipitation COTREC TREC with own algorithm of vector 

control 

Currently using an algorithm of the SCENE 
module, planned implementation of the 
optical flow algorithm

Evolution of the 
field of precipitation None None Autoregressive model of AR(2)
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The INCA-PL2 rainfall model is based on the 
widely used TREC extrapolation algorithm, applying 
its continuous version of COTREC, applied to the en-
tire field of precipitation (Mecklenburg, 2000). This 
model does not detect convectional rainfall, therefore 
in the SCENE model their specificity is taken into ac-
count, and separate vector fields for non-convective 
and convective rainfall have been introduced. Differ-
ent measurement and model data are used for the de-
tection of convection (from POLRAD radar network, 
PERUN lightning detection system, Meteosat meteo-
rological satellites, and from the mesoscale COSMO 
and AROME numerical models), and they are com-
bined using the fuzzy logic technique (Jurczyk et al., 
2012).

Attempts have been made to implement in the 
SCENE the forecasting module of the rainfall evolu-
tion in addition to the advection of the precipitation 
field. A conceptual model was applied, which deter-
mines, on the basis of measured convection param-
eters, the evolution of each convective cell for the 
next 2 hours, similar to the British GANDOLF model 
(Pierce et al., 2000). However, the validation of this 
version of the SCENE model did not show a signifi-
cant improvement in the quality of forecasts. 

PROPOSED MODEL FOR PRECIPITATION 
NOWCASTING: THE SNAR

Assumptions
Due to the need to extend the forecast lead time, other 
solutions were applied. In the proposed SNAR model 
(Spectral Nowcasting with Autoregressive model) as-
sumptions similar to those used in the STEPS model 
were adopted.

The nowcasting model being developed is based 
on: (a) decamposition of the precipitation field into 
layers associated with the spatial scale of precipitation 
objects (using Fourier); (b) determining the extrapola-
tion vectors; and (c) forecasting the precipitation field 
evolution using the second-order autoregressive mod-
el AR(2).

There are plans to create, on the basis of the SCENE 
and SNAR models, one nowcasting system within the 
more general SEiNO (precipitation estimation and 
nowcasting system) system (Szturc and in., 2018),  
(see: Table 1). 

Decomposition of the precipitation field into lay-
ers corresponding to the spatial scale of the 
precipitation objects – fast Fourier transform
Spectral analysis of any given images, for instance 
of the precipitation field R(x, y, t), makes it possible 
to reject the least significant part of the information 
without introducing significant distortions. In the Fou-
rier transform, the separation of the precipitation field 
into size-dependent components is carried out. In the 
studies described, fast Fourier transform and Gaussian 
bandpass filter were used.

In the fast Fourier transform (FFT), a series of har-
monic components is selected, related to the different 
spatial scale of rainfall objects equal to 2p, where: p is 
the number of the level (that is, of the harmonic com-
ponent).

The number of levels depends on the spatial reso-
lution of the rainfall data, which limits the lower value 
of the spatial scale, and the size of the domain that 
determines the upper value. In this study a decompo-
sition into 10 levels was applied. Spatial scales in the 
range from 2m to 2 km are used, that is, for m = 10: 
1024, 512, 256, …, 2 km.

An example of decomposition of the precipitation 
field presented in Figure 1a to individual levels is 
shown in Figure 2, while the result of their reassembly 
is presented in Figure 1b.

Forecasting the evolution of the precipitation field 
– autoregressive model AR(2)
Having generated the individual levels of the precipi-
tation field, their evolution is predicted using the sec-
ond-order autoregressive model AR(2). This is used to 
obtain forecasts for each level, and then adding them 
together to obtain the final forecast of the precipitation 
field. One of the advantages of this model is that it 
practically does not require calibration.

The precipitation field R is expressed in the units 
of R [dBR] = 10 · log10(c + R [mm]), g where constant 
c = 1 mm. The input to the model consists of three pre-
cipitation fields (pixels with x, y): Rraw(x, y, t) for the 
current time step t; Rraw(x, y, t – 1) for the previous time 
step t – 1; Rraw(x, y, t – 2) for time step t – 2.

1)	 Decomposition of Rraw(x, y, t) fields into m levels 
is performed using fast Fourier transform, as fol-
lows:
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	 R x y t R p x y traw p
m

raw( , , ) ( , , , )≅ =∑ 1 	 (2)

Further calculations in points 2 to 7 are per-
formed separately for each level of p.

2)	 The field of Rraw(x, y, t) for the level p is normali-
zed using the following formula: 

	 R p x y t R p x y t p t
p t

raw( , , , )
( , , , ) ( , )

( , )
=

− µ
σ

	 (3)

where:
	 m(p, t)	– � the average of z Rraw(p, x, y, t) for the 

level of p;
	 s(p, t)	– � standard deviation of the values of 

Rraw(p, x, y, t) for the level of p.

3)	 The advection is performed for each pixel (x, y) of 
the level p from the time step t – 1 and t – 2 into 
step t using the advection vectors of (vx, vy).

Currently, algorithms for determining the field 
of precipitation advection vectors from the SCENE 
model (Szturc et al, 2018) are used, but ultimately 
the model will be based on the optical flow meth-
od (for instance, Pierce et al., 2012). One common 
field of displacement vectors (vx, vy) is used, from 
the time step of t – 1 to t. A version allowing for the 
determination of vector fields for each level sepa-
retly is being developed.

The result is two fields: R(p, x + vx, y + vy, t – 1) 
as the result of advecting the field R(p, x, y, t – 1) 
to the time step t and R(p, x + 2vx, y + 2vy, t – 2) as 
the result of advecting the field R(p, x, y, t – 2) to 
the term of t.

4)	 For the above fields, correlation coefficients are 
calculated, with the analysis for the given time 
step of t:

rraw1(p, t) between the fields of R(p, x + vx, y + 
vy, t – 1) and R(p, x, y, t),

rraw2(p, t) between the fields of R(p, x + 2vx, y + 
2vy, t – 2) and R(p, x, y, t).

These coefficients are smoothed to the value of 
r1(p, t) and r2(p, t) by averaging with the previous 
time step (which has a reduced weight).

If the process is non-stationary, that is if coef-
ficients rraw1(p, t) and rraw2(p, t) differ significant-

ly, then the weights are not determined, and only 
the extrapolation forecast is calculated: R(p, x, y, 
t + 1) = R(p, x + vx, y + vy, t) and steps 5 and 6 are 
omitted.

5)	 The AR(2) model weights are determined based 
on the values of the above correlation coefficients 
(Wilks, 2011):

	 φ1
1 2

1
2
1

1
( , ) ( , ) ( ( , ))

( , )
,p t r p t r p t

r p t
=

⋅ −
− 	

	 φ2
2 1

2

1
21

( , ) ( , ) ( , )
( , )

p t r p t r p t
r p t

=
−

− 	

(4)

or, in the simplified form:

	 φ φ1 1 2 2( , ) ( , ), ( , ) ( , )p t r p t p t r p t= = 	 (5)

These weights are then normalized.

6)	 The forecast for the time step of t + 1 is obta-
ined from the precipitation fields for steps t and 
t – 1, taking into account the weight of the model 
AR(2):

	 R p x y t p t R p x v y v t

p t R p x v y
x y

x

( , , , ) ( , ) ( , , , )

( , ) ( , ,

+ = ⋅ + + +

+ ⋅ +

1

2
1

2

φ

φ ++ −2 1v ty , )
		

		  (6)

7)	 For lead times longer than one time step, the we-
ight and forecast calculation (points 3 to 6) is re-
peated for every forecast time step using the same 
displacement vector field.

In the simplified version, the weights are de-
termined only for the first lead time, after which 
they are applied to all subsequent lead times (Seed 
2003).

8)	 Ultimately, for each lead time specified by  time 
steps, all levels of p are denormalized, and then 
reassembled as follows: 

	 R x y t n p t

R p x y t n p t
final p

m( , , ) ( ( , )

( , , , ) ( , ))

+ = ⋅

⋅ + +
=∑ 1 σ

µ
	 (7)
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A CASE EXAMPLE OF THE SNAR MODEL 
OPERATION

Tentatively, four versions of the precipitation field 
forecasting algorithm were tested, defined by: (a) the 
method of weighting – either according to Wilks (2011) 
(formula 4) or directly from correlation coefficients 
(formula 5); ​​(b) the use of weights – for each lead time 
separately, or according to Seed (2003), that is using one 
common set of weights. The best results, that is such as 
the most correctly reproduce the evolution of the pre-
cipitation field, were obtained at the initial stage of the 
work by calculating the weights for each lead time sep-
arately from the formula 4. The following example was 
created for this particular version of the model.

Figure 1a shows the analysis of the precipitation 
field for June 29, 2017 at 12:00 UTC, when in large 
parts of Poland there was intense convective rainfall 
with intensities up to several dozen millimetres per 
hour. The RainGRS module provided precipitation 
analyses, whose time step is 10 minutes, and the pre-
cipitation fields are 10-minute accumulations. On the 
other hand, in Figure 1b we have presented a field of 
precipitation after reassembling the levels created as 
a result of decompositing the precipitation analysis by 
the FFT technique.

Figure 2 shows the analysis from Figure 1a after 
it has been decomposed into individual levels related 

to the spatial scale of rainfall objects, from the largest 
being 1024 km (that is, exceeding the 900 × 800 km 
domain size for which RainGRS rainfall is estimat-
ed), to the smallest being 2 km.

Figure 3 shows an example of a nowcasting fore-
cast carried out with the model described above, 
where ultimately individual levels are reassembled 
into forecasted precipitation fields for subsequent 
lead times.

Figure 4 shows the behaviour of the model in the 
case example of convective rainfall discussed above. 
The charts show:

I coefficients of correlation between the precipi-
tation field at the time of t, and rainfall fields at the 
t – 10 min and t – 20 min shifted with advection vec-
tors to time t, which can be treated as measures of 
forecasts’ autocorrelation,

II AR(2) model weights calculated based on these 
correlation coefficients (formula 4).

Figures 4a and 4b show the course of the correlation 
coefficient and the model weights depending on the lead 
times of the forecasts, for two different spatial scales of 
precipitation objects: 256 km – associated with non-con-
vective rainfall, and 8 km – where the pronounced influ-
ence of convective phenomena is expected.

For large objects (see: Fig. 4a), the decorrelation, 
reflecting in the differences between the correlation 
coefficients for rainfall field at t and fields from time 

Fig. 1. Example of the (a) rainfall field analysis; and the (b) result of the accumulation of all layers decomposed using fast 
Fourier transform

a)	 b)
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t – 10 min and t – 20 min advected to t is negligible, 
whereas more significant differences can be noticed 
only with shorter lead times. On the other hand, for 
smaller objects (see: Fig. 4b), these differences are 

clear for shorter lead times up to 90 minutes, and they 
reach 0.1 for the correlation coefficient, which also 
significantly affects the forecast weights depending on 
the lead time.

Fig. 2. Example of Fourier transformation of the rainfall field – decomposition into layers (harmonics) related to the spatial 
scale of precipitation objects
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Fig. 3. Nowcasts generated from rainfall analysis from Figure 2 with lead time up to 90 min. The grey areas mainly in left 
parts of the fields are related to lack of data due to the field advection
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CONCLUSIONS

The above observations confirm that the separation 
of rainfall into at least two classes – convective and 
non-convective – is necessary in order to improve 
the reliability of nowcasts. Furthermore, in the case 
of convective precipitation, it seems necessary to 
predict the evolution of the precipitation field. It can 
be concluded that the techniques described herein al-
low for some progress to be made in the nowcasting 
of the precipitation field. The pertinent algorithms 
require a  detailed validation for various meteoro-
logical situations, using rainfall data available at the 
IMGW-PIB.

The developed algorithms will be implemented at 
the IMGW-PIB to the SEiNO system, and they will 
serve for the operational generation of nowcasting 

precipitation forecasts. These nowcasts constitute the 
input to hydrological rainfall-runoff models in the 
Hydrology System, in particular to the planned flash-
flood models (caused by heavy rains), as a tool for 
meteorological and hydrological forecasting, and they 
are made available to external users, in particular to 
regional and district crisis management centres, etc.
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NOWCASTING OPADU OPARTY NA ALGORYTMACH EKSTRAPOLACJI I EWOLUCJI POLA OPADU. 
WSTĘPNE WYNIKI

ABSTRAKT

Prognozy modeli nowcastingowych coraz częściej są wykorzystywane jako wejście do modeli hydrologicz-
nych typu opad-odpływ. Podstawowym sposobem ich obliczania jest ekstrapolacja (adwekcja) bieżącego 
pola opadu, zgodnie z wyznaczonymi wektorami przemieszczenia. Największym ograniczeniem tej metody 
jest brak uwzględnienia dynamiki (ewolucji) pola, co istotnie wypływa na dokładność prognoz. Spada ona 
szybko z wydłużaniem czasu wyprzedzenia, co widoczne jest szczególnie podczas sytuacji konwekcyjnych. 
Dlatego obecnie kładzie się nacisk na metody pozwalające uwzględnić ewolucję pola opadu.

Z analizy literatury wynika, że modele cyklu życia komórek nie są wystarczające do istotnej poprawy 
jakości prognoz, dlatego badane są inne podejścia. Niniejszy artykuł przedstawia zastosowanie modelu au-
toregresyjnego AR(2) do uwzględnienia zmienności pola. Prezentowany model SNAR (Spectral Nowcasting 
with Autoregression), rozwijany w IMGW ma na celu zwiększenie sprawdzalności prognoz nowcastingo-
wych dla większych czasów wyprzedzenia.

Proponowane są dwa nowatorskie rozwiązania: I) rozkład pola na składowe zależne od skali przestrzen-
nej, II) prognoza oparta na modelu autoregresyjnym rzędu drugiego. W artykule przedstawiamy opis algoryt-
mów używanych w SNAR oraz pierwsze uzyskane rezultaty.

Słowa kluczowe: opad atmosferyczny, nowcasting, prognozowanie, modelowanie.


