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ABSTRACT

Aim of the study
The article presents an algorithm for calculating the distribution of flow in a junction of open channel network 
under steady flow conditions. 

Material and methods
The presented algorithm is based on the continuity equation and a simplified energy equation. To describe 
the relationship between the depth of water and the flow rate, the Manning’s equation was used to express 
discharge in the main channel, whereas in case of other channels, with hydraulic structures, appropriate 
equations describing the flow over a weir and through the culverts were used. Substitution of the abovemen-
tioned relationships into the continuity equation leads to a non-linear algebraic equation with respect to the 
water level. The resulting equation can be solved with iterative numerical methods. Calculation example 
using the proposed algorithm was carried out for the hydraulic system located on the Strzyża stream in 
Gdańsk.

Results and conclusions
The presented approach can be an alternative to analytical-graphic method and it does not require formulation 
of the boundary problem for the system of ordinary differential equations describing the gradually varied flow 
in the open channel network.

Keywords: division of flows, open channel network, steady gradually varied flow, nonlinear equation, flow 
through weir and culvert

INTRODUCTION

When a steady gradually varied flow in a network of 
open channels is considered, often it is necessary to 
estimate the distribution of flow in its branches. Usu-
ally the flow rate Q in one of the channels is known 
(or the water level h corresponding to this flow rate), 
whereas the percentage shares of flows in the remain-
ing channels are unknown. Assuming the connection 
of the three channels presented in Figure 1a, it is nec-
essary to determine the flow rates QJ and QK in the 

other two channels – J and K, respectively – with the 
known flow rate of QI.

The above problem is a typical example of the 
steady gradually varied flow in a channel network. In 
the classical approach, the problem of this kind can be 
solved graphically and analytically based on the flow 
curves of individual channels. A detailed description 
of this approach is presented by Chow (1959) and 
French (1985). In order to obtain the solution, one can 
also formulate the boundary problem for the system of 
ordinary differential equations (Szymkiewicz, 2000). 
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Such approach is valid if the flow in the channels is 
not known. Equations of this type are derived from de 
Saint Venant system of equations, with the assumption 
of steady flow conditions. In the case of a single chan-
nel, these equations take the following form:
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where:
	 Q	 –  flow rate,
	 x	 –  spatial variable,
	 h (x)	 – � water level above the assumed datum, h = 

z + H (see: Fig. 2),
	 H (x)	–  water depth,
	 z (x)	 – � bottom elevation above the assumed da-

tum,
	 A (x)	 –  wetted cross-sectional area,
	 S	 –  friction slope,
	 α	 –  de Saint-Venant coefficient.

The friction slope can be estimated using the trans-
formed Manning equation:

	 S n Q
A R

= ⋅
⋅

2 2

2 4 3/ 	 (3)

where R is the hydraulic radius, and n is Manning’s 
roughness coefficient.

The system of differential equations (1–2) de-
scribes the changes of the water level h(x) along the 
channel at a constant flow rate Q. That system of equa-
tions should be supplemented by two boundary condi-

tions, one at the beginning, and one at the end of the 
channel L (see: Fig. 2):

	 h(x = 0) = h0  and  h(x = L) = hL	 (4a,b)

where h0 and hL are the water levels in cross sections x 
= 0 and x = L, respectively.

The system of differential equations (1–2) written 
for a single channel can be solved, for example, by 
applying the implicit trapezoidal rule (Szymkiewicz, 
2010; Artichowicz and Gąsiorowski, 2018). As a re-
sult of the discretization of equations (1–2) and addi-
tionally noticing that Qi = Qi+1 = QI = constant, we 
obtain the following algebraic equation:
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where:
	 i	 – � cross-section index in the channel, i = 1, ...., 

N-1,
	 N	 – � number of cross-sections,
	 I	 – � channel index,
	 Δx	 – � distance between the sections.

Similar equations can be derived for the remain-
ing channels J and K. As a result, a system of (N-1 
+ M-1 + P-1) algebraic equations with (N + 1 + M 
+ 1 + P + 1) unknowns is obtained. There are (N + 
M + P) unknown values of water levels in particu-
lar cross-sections of the channels, and one unknown 
value of flow rate per channel (Szymkiewicz, 2010). 
To solve the abovementioned system of equations it 
is necessary to impose additional conditions at the 
channel connections, resulting from the conservation 
of mass principle:

	 QI = QJ + QK	 (6)

and from the energy conservation principle:
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where:
	 I, J, K	– � channel designations (see: Fig. 1a),
	 i, j, k	 – � designation of nodes at the channels’ con-

nection, i = N, j = 1, k = 1 (see: Fig. 1b).

Fig. 1. Three connected channels: general scheme (a), discreti-
sation scheme (b)



Gąsiorowski, D., Artichowicz, W. (2019). Distribution of flows in a channel network under steady flow conditions. Acta Sci. Pol., For-
matio Circumiectus, 18(1), 27–37.  DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.1.27

29www.formatiocircumiectus.actapol.net/pl/

Fig. 2. Calculation scheme of longitudinal profile for the system of ordinary differential equations describing steady gradu-
ally varied flow 

Algebraic equations (5) written for individual chan-
nels constitute a global system of nonlinear equations. 
This system, supplemented with the known boundary 
conditions (4a, b) and with the compliance conditions 
(6,7), can be solved using the Picard method (Szym-
kiewicz, 2010). As a result, we obtain the flow rates 
in individual channels QI, QJ, QK and the water level 
profile – h (x) – along the channels.

In the above-mentioned formulation of flow distri-
bution issues, the boundary conditions for obtaining 
the correct solution must be imposed. In other words, 
the water level values at the end of channel hi = 1, hj = N, 
hk = N are required (see: Fig. 1b). When these values are 
unknown, this requirement may constitute a significant 
limitation. Most often, the end section is an ordinary 
channel cross-section, and then the boundary condition 
can be determined on the basis of the relationship be-
tween the flow rate and the water elevation in the form of 
the flow curve Q = Q (h) or in the form of the Manning 
equation. On the other hand, if the water in the channels 
flows through hydraulic structures, then the known for-
mulas describing the relationship between the flow rate 
and the hydraulic head of a given structure can be used.

FLOW DISTRIBUTION CALCULATED ON THE BASIS 
OF SOLVING THE NONLINEAR MASS BALANCE 
EQUATION 

Due to the approximation of the system of ordinary 
differential equations, a system of non-linear algebra-
ic equations arises (Eq. (5)) which has to be solved. 

Besides the application of an appropriate method to 
solve such a system of equations, the convergence of 
the iterative process itself may become an issue. An-
other problem complicating the solution is the variable 
number of roots of the resulting algebraic equations 
(5) (Artichowicz and Szymkiewicz, 2014). Therefore, 
in order to avoid the aforementioned problem, alterna-
tive methods can be proposed which result from appro-
priate simplifications. If the scope of interest is only 
the information regarding the percentage distribution 
of flows, this issue can be significantly simplified by 
omitting information related to the water level profile 
along the channels. Then, the solution of the flow dis-
tribution problem can be based only on the conditions 
(6–7). In this approach, the mass balance equation (6) 
is adopted in an unchanged form, while in the energy 
equation (7) for small differences in velocity, only the 
compliance of water levels can be assumed:

	 hi = N = hj = 1 = hk = 1 = h	 (8)

Additionally, using appropriate relationships be-
tween the water level elevation h, and the flow rate 
in individual channels Q = Q (h) (for instance, the 
Manning equation, or the flow formula through weir 
or culvert), the mass balance equation for the open 
channel network node can be ultimately rewritten in 
the following form:

	 QI (h) – QJ (h) – QK (h) = 0	 (9)

In the presence of hydraulic structures, it is as-
sumed that these structures are located at a sufficient-
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ly close distance from the network junction, so that 
the water level in the junction simultaneously corre-
sponds to the level determining the hydraulic head of 
the structure. The mass balance equation obtained in 
this way is a nonlinear equation with one unknown, 
that is, the water level h. This equation can be solved 
by any method used for solving algebraic nonlinear 
equations, for instance Newton’s, Picard’s, false po-
sition, or simple fixed point iteration method. Due to 
this approach, the flow distribution problem is reduced 
to solving only one algebraic nonlinear equation in-
stead of a system of equations.

APPLICATION EXAMPLE

Flow distribution calculations were performed for the 
river network junction near the Srebrniki reservoir lo-
cated on the Strzyża stream in Gdańsk (see: Fig. 3). 
The junction consists of a section of the main channel 
with a trapezoidal cross section (see: Fig. 4a), con-
nected to two other channels. One of the two channels 
transports water to the reservoir through a rectangular 
culvert (see: Fig. 4b), while the other one is the diver-
sion channel of this reservoir, including two circular 
culverts over which the trapezoidal weir is located (see: 
Fig. 4c). Therefore, the flow in the main channel Qg is 
distributed to flow through the culvert towards the res-
ervoir Qp and the flow in the diversion channel Qo (see: 

Fig. 3a). The flow in the diversion channel depends on 
its current water level. Flow can take place through the 
circular culverts with flow rate Qk only or additionally 
through the trapezoidal weir with flow rate Qt. Taking 
into account these hydraulic schemes, the non-linear 
mass balance equation with respect to the depth H writ-
ten for the analysed junction takes the following form:

	 Qg – Qp (H) – (Qk (H) + Qt (H)) = 0

or

	 Qg – Qp (H) – Qo (H) = 0	
(10a, b)

In the considered task, it was assumed that in the 
main channel a subcritical flow occurs, i.e. the depth 
H is greater than the critical depth (H > Hkr). In addi-
tion, because the capacity of the diversion channel, as 
well as the channel transporting water to the reservoir 
is smaller than in the main channel at normal depth 
Hn, the water in the cross-section of the computation-
al node will increase to the depth of H (H> Hn). As 
a result, on the analysed section in the main channel, 
a backwater profile is created. This situation is sche-
matically illustrated in Figure 3b.

In the main inflow channel and the diversion chan-
nel (see: Fig. 4a, c), the relation between the flow rate 
and water depth has been determined using the Man-
ning equation for the trapezoidal cross-section:

Fig. 3. “Srebrniki” hydraulic node: plan view (a), longitudinal section (b).
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where:
	 b	 – width of the channel at the bottom level,
	 s	 – channel bed slope,
	 m	 – bank slope parameter.

In the case of the hydraulic structures, the appro-
priate formula was adopted for a given culvert or weir 
depending on the current water level in the channel. 
The water level in turn determines the corresponding 
hydraulic condition, in which the structures operate. 
The culvert may operate with a free-surface flow or 
a pressurized flow. The first type of flow occurs when 
the following conditions for non-submerged inlet and 
outlet are fulfilled (Bodhaine, 1976; French, 1985):

	 H/D < 1.5,   Hd < D	 (12a, b)

where:
	 H	 – water depth above the inlet bottom,
	 D	 – height or diameter of the culvert,
	 Hd	 – water depth above the bottom of the outlet.

In addition, for the flow with a free surface, we need 
to distinguish between the conditions of subcritical 
flow and those of supercritical flow (see: Fig. 5a, b). 
In this case, the formulas for calculating the discharge 
take the following forms, respectively – for subcritical 
flow (s < skr) (French, 1985; Szpakowski, 2015):

	 Q A g H HN d L= ⋅ ⋅ −( )µ 2 ∆ 	 (13)

and for supercritical flow (s > skr):

	 Q A g H HN kr kr= ⋅ −( )µ 2 	 (14)

where:
	 s	 –  culvert bed slope,
	 skr	 –  critical slope,
	 µN	 – � discharge coefficient (non-submerged in-

let),
	 ΔH	 – � difference of water levels at the inlet and 

at the outlet of the culvert, ∆H = H – Hd,
	 Hkr	 – � critical depth in the culvert,
	 Ad, Akr	 – � cross-sectional area at the depth of Hd, 

Hkr, respectively
	 HL	 – � height of hydraulic losses along the 

length.

Additionally, the flow with a free surface, sub-
merged inlet and with a non-submerged outlet (see: 
Fig. 5c) should be taken into consideration. For this 
case, the following formula can be used:

	 Q A g Hz= ⋅ ⋅ ⋅µ 0 2 	 (15)

where:
	 μz	 – � discharge coefficient (submerged inlet),
	 A0	 – � cross-sectional area at the culvert inlet cor-

responding to the area completely filled with 
water.

In order to determine the flow rate in the culvert 
operating in pressurized flow conditions (see: Fig. 5d), 
the formula (13) can be used, with the only difference 
being that the cross-sectional area Ad will correspond 

Fig. 4. Cross sections of: the main channel (a), rectangular culvert (b), trapezoidal weir and circular culverts in the diversion 
flow channel (c)
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to the area of the culvert cross-section completely 
filled with water, i.e. Ad = A0.

The values of the discharge coefficients μ depend 
mainly on the geometry of the culvert, the type of inlet 
construction and the depth of water H before the inlet 
(French, 1985; Kubrak and Kubrak, 2004).

The trapezoidal weir, located above the circu-
lar culverts, can operate as a non-submerged or sub-
merged weir structure depending on the hydraulic con-
ditions (see: Fig. 6). In non-submerged conditions, the 
discharge of the weir can be determined on the basis of 
the following formula (Sawicki, 2009):

	 Q g B H tg HPT p p= ⋅ + ⋅( )2
15

2 5 43 2 5 2µ α/ / 	 (16)

where:
	 Hp	 – � hydraulic head of the weir, Hp =H – Hg,
	 Hg	 – � height of the weir,
	 B	 – � width of the weir at the threshold level,
	 µPT	 – � discharge coefficient,
	 α	 – � angle of inclination of the weir edge to the 

vertical.

The weir is considered to be submerged when the 
following conditions are fulfilled (see: Fig. 6a):

	 Ho > Hg  and  DH/Hg < 0.7	 (17a, b)

where:
	 Ho	 – � water depth after the weir,
	 ΔH	 – � difference of water levels before and after 

the weir, ∆H = H – Ho.

Fig. 5. Hydraulic schemes of the culvert operation during the flow: with free surface, non-submerged inlet (subcritical flow) 
(a), with free surface, non-submerged inlet (supercritical flow) (b), with free surface, submerged inlet (c), pressurized flow (d)

Fig. 6. Hydraulic schemes of the weir (a), cross-section of the trapezoidal weir (b)
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Then the discharge of the weir can be estimated 
according to the following expression:

	 Qz = s ∙ Q	 (18)

where Q is the discharge determined for a non-sub-
merged weir, while σ is a submergence factor of the 
weir, the value of which can be computed according 
to the following formula (Kubrak and Kubrak, 2004):

	 σ = +
−( )






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COMPUTATIONAL ALGORITHM

The presented formulas make it possible to estimate the 
discharges of individual structures in the mass balance 
equation (10a). The non-linear equation obtained in this 
way, was solved with respect to water depth H using 
the false position method. While solving the equation, 
first the initial approximation of the normal depth H 0 
in the main channel has to be determined for the given 
flow rate Qg (see: Fig. 7). This depth is determined on 
the basis of the Manning equation, which is equivalent 
to solving the non-linear equation (11). The determined 
value of the depth H k = H 0 (where k denotes the iter-
ation index) is at the same time the hydraulic head of 
the culverts that allows estimating the discharge to the 

reservoir through the rectangular culvert Qp(H k). Us-
ing the mass balance equation (10b), the flow rate in 
the diversion channel Qo = Qg – Qp is also computed. 
The character of the flow in the diversion channel near 
the circular culverts and the trapezoidal weir depends 
on the hydraulic conditions before and after the given 
structure. In the case of a culvert, this may be flow with 
a free surface or the pressurized flow, whereas the weir 
may work either as non-submerged or submerged.

Therefore, in order to identify the proper oper-
ation of the hydraulic system, it is also necessary to 
determine depth Ho

k in the diversion channel after the 
structures using the Manning equation. Based on 
the knowledge of the depth approximations H k and Ho

k 
in the given iteration k, it is possible to determine – by 
adopting the appropriate calculation scheme – the val-
ues of flow through the circular culverts Qk (H k, Ho

k) 
and through the trapezoidal weir Qt(H k, Ho

k). The iter-
ative process of approximating the depth H is carried 
out until the mass balance equation (10a) is fulfilled 
with the given required accuracy, in other words, the 
calculations are completed when the following con-
vergence criterion is fulfilled:

	 H Hk k( ) ( )+ − ≤1 ε 	 (20)

where:
	 ε	 – � required accuracy, the value of ε = 0.0001 m 

was adopted in the study.

Fig. 7. Computational algorithm for flow distribution in the analysed hydraulic node
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EXAMPLE OF COMPUTATIONS

In the analysed hydraulic system, the channels have 
a trapezoidal shape in the cross-section, with a bank 
slope of m = 1.5 and a bottom slope of i = 0.5%. In 
turn, the widths at the bottom of the main channel 
and the diversion channel are assumed to be equal to 
bg = 3.5 m and bo = 1.0 m, respectively (see: Fig. 4a, 
c). In these channels, a constant Manning coefficient 
value n = 0.02 m–1/3 s was assumed. Due to the signif-
icant bottom slope in the rectangular culvert (s = 3%), 
it was assumed that this culvert would operate only in 
the supercritical flow. In such case the possibility of 
submerging the inlet does not occur and the discharge 
of the culvert Qp can be determined by means of the 
formula (14). In the case of circular culverts and trap-
ezoidal weir, it was assumed that they could operate 
in the submerged and non-submerged flow condi-
tions. The discharge Qk in this case is determined by 
the equations (13–15), whereas the weir discharge Qt 
is determined by the equations (16) and (18). In or-
der to simplify the calculations, the hydraulic losses 
(HL = 0) in circular culverts were omitted. Also fixed 
values of discharge coefficients were assumed for cul-
vert and weir operating in the given hydraulic condi-

tions. The assumed values of geometrical and hydrau-
lic parameters of individual structures are presented 
in Table 1.

The flow distribution calculations were performed 
for the assumed flow rate in the main channel Qg. 
The highest value of the flow rate corresponded to 
the maximum flow with the probability of exceed-
ance p = 10%, that is, Qg = Q10% = 6 m3 ∙ s–1. The cal-
culations were carried out for the existing system as 
well as for a hypothetical system without the circular 
culverts and trapezoidal weir in the diversion chan-
nel. The results of the flow distribution calculations 
are presented in the form of the characteristics show-
ing the relation between the flow rate and the depth 
Q = f (H) (see: Fig. 8a, 9a) as well as the percentage 
share of individual flows with regard to the flow Qg 
in the main channel (see: Fig. 8b, 9b). This relative 
share was estimated according to the following rela-
tionship:

	 ∆Q Q
Q
i

g
= 100% 	 (21)

where Qi denotes flow through the appropriate channel 
or structure (Qo, Qp, Qk or Qt).

Table 1. Assumed values of the parameters of structures operating in the analysed hydraulic conditions

Device Hydraulic scheme Criterion Geometrical 
parameters

Discharge 
coefficients

Circular 
culvert

Flow with a free 
surface

Non-submerged inlet and 
outlet, subcritical flow H/D < 1.5, Hd < D, s < skr

D = 0.4 m

0.85

Non-submerged inlet and 
outlet, supercritical flow H/D < 1.5, Hd < D, s > skr 0.90

Submerged inlet, 
non-submerged outlet H/D > 1.5, Hd < D 0.50

Flow under 
pressure

Submerged inlet and 
outlet H/D > 1.0, Hd > D 0.60

Rectangular 
culvert

Flow with a free 
surface

Non-submerged inlet and 
outlet, supercritical flow H/D < 1.5, Hd < D, s > skr

D = 1.3 m,
B = 2.0 m 0.90

Trapezoidal 
weir

Non-submerged
–

– B = 3.0 m
tgα = 1.5

Hg = 0.7 m

0.60

Submerged Ho > Hg, ∆H/Hg < 0.7 Formula (19)
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When analysing the graph in Figure 8b, it can 
be observed that in the existing system for various 
depths H, there are different distributions of the flow. 
This relationship has a nonlinear character and re-
sults from the fact that in individual channels the 
structures can operate in different hydraulic con-
ditions. For the depth range of 0.1–0.5 m, a nearly 
constant trend in flow distribution is obtained (see: 
Fig. 8b), where the flow to the reservoir through the 
culvert Qp is about 70% of the flow in the main chan-
nel Qg, whereas the flow to the diversion channel Qo 
is 30% of that flow. In this depth range, the flow in 
the diversion channel takes place only through cir-
cular culverts, i.e. Qo = Qk. For depths above 0.6 m, 
the condition for non-submerged inlet (Eq. (12a)) is 
not fulfilled, which causes a change in the hydraulic 
conditions of the culverts’ operation, and thus affects 
the value of the flow rate. Above the depth of 0.7 m, 
there is a gradual increase in the flow Qo in the diver-
sion channel, which is accompanied with the percent 
decreasing discharge Qp to the reservoir. This results 
from the fact that the depths H > 0.7 m correspond to 

the position of the water level above the threshold of 
the trapezoidal weir (see: Fig. 3b and Fig. 6a), which 
in turn causes the inclusion of that trapezoidal weir in 
the operation with discharge Qt. Therefore, the flow 
in the diversion channel takes place both through the 
circular culverts and through the weir, thus Qo = Qk + 
Qt. In addition, for the appropriate value of the depth 
Ho after the culverts, inlets of the culverts may be-
come submerged, which forces the pressurized flow. 
A further increase in the depth of Ho also causes sub-
merging of the weir.

The situation is different in the flow distribution 
when the lack of culverts and weir in the diversion 
channel is assumed (see: Fig. 9). In this case, the in-
crease in value of depth causes a gradual increase in 
the percentage share (from 40% to 65%) of the flow 
Qo in the diversion channel, while at the same time 
the flow Qp to the reservoir is reduced from 60% to al-
most 35%. Significantly lower values of inflow to the 
reservoir, in comparison to the existing system shown 
in Figure 8, are obviously due to an absence of back-
water effect in the diversion channel.

Fig. 8. Results of flow distribution computations for the existing system: characteristics of Q = f(H) for individual channels and 
structures (a), percentage share of the flow Qg (b)
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CONCLUSIONS

The article presents a computational algorithm for de-
termining the flow distribution in the junction of open 
channels network under steady gradually varied flow 
conditions. The algorithm is based on the adequate 
conditions at the junction of the channels, resulting 
from the continuity equation and a simplified energy 
equation, in which only the conformity of water levels 
has been taken into consideration. Additionally, us-
ing the relationships between the water level and the 
flow rate in individual channels including hydraulic 
structures, the simplified mass balance equation was 
derived. For this reason, the obtained mass balance 
equation is a non-linear one with regard to the wa-
ter depth. In the present work, the false point method 
was used in order to solve this equation. Consequent-
ly, due to this approach the flow distribution problem 
was reduced to solving only one algebraic non-linear 
equation instead of a system of equations. Therefore, 
the presented flow distribution algorithm can offer 
an alternative to the analytical-graphic method or a 
method based on the solution of the boundary prob-
lem for the system of ordinary differential equations 
describing the steady gradually varied flow in the 
open channel network.

Sample computations using the proposed algo-
rithm were carried out for the hydraulic system of the 
network of channels located on the Strzyża stream 
in Gdańsk. Flow distribution calculations were per-
formed for different values of the determined flow rate 
in the main channel – for the existing system, as well 
as for the hypothetical system without the hydraulic 
structures in the diversion channel.
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ROZDZIAŁ PRZEPŁYWÓW W SIECI KANAŁÓW W WARUNKACH RUCHU USTALONEGO

ABSTRAKT

Cel pracy
W artykule przedstawiono uproszczony algorytm obliczeniowy służący do oszacowania rozdziału przepły-
wów w sieci kanałów w warunkach przepływu ustalonego.

Materiał i metody
Algorytm obliczeniowy opiera się na warunkach zgodności w połączeniu kanałów wynikających z równania 
zachowania masy oraz uproszczonego równania energii, w którym przyjęto tylko zgodność poziomów wody. 
Wykorzystując dodatkowo związki pomiędzy rzędną zwierciadła wody, a natężeniem przepływu w poszcze-
gólnych kanałach oraz urządzeniach występujących w tych kanałach wyprowadzono odpowiednie równanie. 
Otrzymane w ten sposób równanie bilansu masy jest równaniem nieliniowym względem tylko głębokości 
wody. W pracy do rozwiązania tego równania wykorzystano metodę siecznych. Przykładowe obliczenia 
z wykorzystaniem zaproponowanego algorytmu przeprowadzono dla układu hydraulicznego znajdującego 
się na potoku Strzyża w Gdańsku.

Wyniki i wnioski
Zaproponowany algorytm rozdziału przepływów może stanowić alternatywę do metody analityczno-graficz-
nej lub metody opartej na rozwiązaniu zagadnienia brzegowego dla układu równań różniczkowych zwyczaj-
nych opisujących przepływ ustalony niejednostajny w sieci kanałów.

Słowa kluczowe: rozdział przepływów, sieć kanałów otwartych, ruch ustalony niejednostajny, przepływ 
przez przelew oraz przepust, równanie nieliniowe 




